TechNote - Minimum Preanalytical Information for the Publication of Studies on Circulating Cell-Free microRNA-based Biomarkers
Improving miRNA biomarker reliability
Copyright (c) 2025 European Atherosclerosis Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Articles
-
Published: August 31, 2025
Abstract
Circulating cell-free microRNAs (miRNAs) are emerging as promising biomarkers with broad potential for clinical applications. However, pre-analytical variability significantly affects miRNA quantification and hampers reproducibility across studies. This work aims to define the Minimum Preanalytical Information required for the publication of studies on circulating cell-free miRNA-based biomarkers. We review key pre-analytical factors that influence circulating miRNA levels quantified using RT-qPCR. Critical variables include blood collection timing, sample type, centrifugation protocols, transport and storage conditions, hemolysis, lipemia, medication, physical activity and pathogen inactivation methods. We introduce a standardized checklist to promote methodological transparency and inter-study comparability. The final aim is to enhance the reliability of miRNA-based biomarker research and support its successful translation into clinical practice.
Article Metrics Graph
References
- Joglekar M V., Wong WKM, Kunte PS, Hardikar HP, Kulkarni RA, Ahmed I, et al. A microRNA-based dynamic risk score for type 1 diabetes. Nat Med 2025. https://doi.org/10.1038/s41591-025-03730-7.
- de Gonzalo-Calvo D, Pérez-Boza J, Curado J, Devaux Y, EU-CardioRNA COST Action CA17129. Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin Transl Med 2022;12:e585. https://doi.org/10.1002/ctm2.585.
- de Gonzalo-Calvo D, Marchese M, Hellemans J, Betsou F, Skov Frisk NL, Dalgaard LT, et al. Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium. Mol Ther Methods Clin Dev 2022;24:171–80. https://doi.org/10.1016/j.omtm.2021.12.007.
- Sopić M, Devaux Y, de Gonzalo-Calvo D. Navigating the path of reproducibility in microRNA-based biomarker research with ring trials. Clin Chem Lab Med 2024;62:2393–7. https://doi.org/10.1515/cclm-2024-0531.
- Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611–22. https://doi.org/10.1373/clinchem.2008.112797.
- Sopic M, Kararigas G, Devaux Y, Magni P. Call for participation in the AtheroNET COST Action to implement multiomics in atherosclerotic cardiovascular disease research. Eur Heart J 2023;44:2143–5. https://doi.org/10.1093/eurheartj/ehad153.
- Kim SH, MacIntyre DA, Sykes L, Arianoglou M, Bennett PR, Terzidou V. Whole Blood Holding Time Prior to Plasma Processing Alters microRNA Expression Profile. Front Genet 2021;12:818334. https://doi.org/10.3389/fgene.2021.818334.
- exRNAQC Consortium. Blood collection tube and RNA purification method recommendations for extracellular RNA transcriptome profiling. Nat Commun 2025;16:4513. https://doi.org/10.1038/s41467-025-58607-7.
- Wang K, Yuan Y, Cho J-H, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One 2012;7:e41561. https://doi.org/10.1371/journal.pone.0041561.
- Mussbacher M, Krammer TL, Heber S, Schrottmaier WC, Zeibig S, Holthoff H-P, et al. Impact of Anticoagulation and Sample Processing on the Quantification of Human Blood-Derived microRNA Signatures. Cells 2020;9. https://doi.org/10.3390/cells9081915.
- Izraeli S, Pfleiderer C, Lion T. Detection of gene expression by PCR amplification of RNA derived from frozen heparinized whole blood. Nucleic Acids Res 1991;19:6051. https://doi.org/10.1093/nar/19.21.6051.
- Moldovan L, Batte K, Wang Y, Wisler J, Piper M. Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods Mol Biol 2013;1024:129–45. https://doi.org/10.1007/978-1-62703-453-1_10.
- Krammer TL, Zeibig S, Schrottmaier WC, Pirabe A, Goebel S, Diendorfer AB, et al. Comprehensive Characterization of Platelet-Enriched MicroRNAs as Biomarkers of Platelet Activation. Cells 2022;11. https://doi.org/10.3390/cells11081254.
- Mitchell AJ, Gray WD, Hayek SS, Ko Y-A, Thomas S, Rooney K, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep 2016;6:32651. https://doi.org/10.1038/srep32651.
- Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 2012;5:492–7. https://doi.org/10.1158/1940-6207.CAPR-11-0370.
- Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F, et al. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 2013. https://doi.org/10.1111/jth.12207.
- Chan S-F, Cheng H, Goh KK-R, Zou R. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn 2023;25:438–53. https://doi.org/10.1016/j.jmoldx.2023.03.005.
- Sluijter JPG, Davidson SM, Boulanger CM, Buzás EI, de Kleijn DPV, Engel FB, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2018;114:19–34. https://doi.org/10.1093/cvr/cvx211.
- Lakkisto P, Dalgaard LT, Belmonte T, Pinto-Sietsma S-J, Devaux Y, de Gonzalo-Calvo D, et al. Development of circulating microRNA-based biomarkers for medical decision-making: a friendly reminder of what should NOT be done. Crit Rev Clin Lab Sci 2023;60:141–52. https://doi.org/10.1080/10408363.2022.2128030.
- Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations. PLoS One 2017;12:e0167969. https://doi.org/10.1371/journal.pone.0167969.
- Matias-Garcia PR, Wilson R, Mussack V, Reischl E, Waldenberger M, Gieger C, et al. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One 2020;15:e0227648. https://doi.org/10.1371/journal.pone.0227648.
- Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 2013. https://doi.org/10.1016/j.ymeth.2012.09.015.
- Rossi-Herring G, Belmonte T, Rivas-Urbina A, Benítez S, Rotllan N, Crespo J, et al. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile. Biomed Pharmacother 2023;162. https://doi.org/10.1016/J.BIOPHA.2023.114623.
- Scicali R, Di Pino A, Pavanello C, Ossoli A, Strazzella A, Alberti A, et al. Analysis of HDL-microRNA panel in heterozygous familial hypercholesterolemia subjects with LDL receptor null or defective mutation. Sci Rep 2019;9:20354. https://doi.org/10.1038/s41598-019-56857-2.
- Scicali R, Bosco G, Scamporrino A, Di Mauro S, Filippello A, Di Giacomo Barbagallo F, et al. Evaluation of high‐density lipoprotein‐bound long non‐coding RNAs in subjects with familial hypercholesterolaemia. Eur J Clin Invest 2024;54. https://doi.org/10.1111/eci.14083.
- Boileau A, Lino Cardenas CL, Lindsay ME, Devaux Y, CardiolincTM network (www.cardiolinc.org). Endogenous Heparin Interferes with Quantification of MicroRNAs by RT-qPCR. Clin Chem 2018;64:863–5. https://doi.org/10.1373/clinchem.2017.284653.
- Kaudewitz D, Lee R, Willeit P, McGregor R, Markus HS, Kiechl S, et al. Impact of intravenous heparin on quantification of circulating microRNAs in patients with coronary artery disease. Thromb Haemost 2013;110:609–15. https://doi.org/10.1160/TH13-05-0368.
- Li S, Zhang F, Cui Y, Wu M, Lee C, Song J, et al. Modified high-throughput quantification of plasma microRNAs in heparinized patients with coronary artery disease using heparinase. Biochem Biophys Res Commun 2017;493:556–61. https://doi.org/10.1016/j.bbrc.2017.08.153.
- Plieskatt JL, Feng Y, Rinaldi G, Mulvenna JP, Bethony JM, Brindley PJ. Circumventing qPCR inhibition to amplify miRNAs in plasma. Biomark Res 2014;2:13. https://doi.org/10.1186/2050-7771-2-13.
- Dagli-Hernandez C, Freitas RCC de, Luchessi AD, Hirata TDC, Fajardo CM, Borges JB, et al. Statin treatment alters the expression profile of plasma exosome-derived microRNAs in patients with familial hypercholesterolemia. J Pharmacol Exp Ther 2025;392:103626. https://doi.org/10.1016/j.jpet.2025.103626.
- de Boer HC, van Solingen C, Prins J, Duijs JMGJ, Huisman M V, Rabelink TJ, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J 2013;34:3451–7. https://doi.org/10.1093/eurheartj/eht007.
- de Gonzalo-Calvo D, Dávalos A, Fernández-Sanjurjo M, Amado-Rodríguez L, Díaz-Coto S, Tomás-Zapico C, et al. Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise. Int J Cardiol 2018. https://doi.org/10.1016/j.ijcard.2018.02.092.
- Witvrouwen I, Gevaert AB, Possemiers N, Ectors B, Stoop T, Goovaerts I, et al. Plasma-Derived microRNAs Are Influenced by Acute and Chronic Exercise in Patients With Heart Failure With Reduced Ejection Fraction. Front Physiol 2021;12:736494. https://doi.org/10.3389/fphys.2021.736494.
- Barber JL, Zellars KN, Barringhaus KG, Bouchard C, Spinale FG, Sarzynski MA. The Effects of Regular Exercise on Circulating Cardiovascular-related MicroRNAs. Sci Rep 2019;9:7527. https://doi.org/10.1038/s41598-019-43978-x.