Postprandial implications in cardiovascular disease and potential markers to develop new therapies

Postprandial State and Novel CVD Markers

Irina Florina Tudorache
ICBP Nicolae Simionescu, Bucharest, Romania
Davide Barbarossa
IRCCS Multimedica, Milan, Italy
Bianca Sanziana Daraban
ICBP Nicolae Simionescu, Bucharest, Romania
Riccardo Rizzo
IRCCS Multimedica, Milan, Italy
Francesco Maria Esposito
IRCCS Multimedica, Milan, Italy
Maurizio Coronelli
IRCCS Multimedica, Milan, Italy
Alberico Luigi Catapano
IRCCS MultiMedica, Milan, Italy, and Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy

Abstract

An unbalanced diet significantly raises the risk of various chronic diseases and cancers, contributing to increased morbidity and mortality globally. Today, the link between metabolic status and cardiovascular disease is well established. Disruptions in glucose and lipid homeostasis, particularly postprandial hyperglycemia and hyperlipidemia are key risk factors for cardiovascular conditions. These postprandial metabolic disturbances promote atherosclerosis and cardiovascular injury, primarily by triggering endothelial dysfunction.
Lifestyle interventions play a pivotal role, and pharmacological treatments aimed at controlling lipid and glucose levels generally lead to improvements in both fasting and postprandial states. However, further research is necessary to establish reference values for biomarkers of postprandial dysmetabolism and to evaluate their clinical relevance. Individuals who exhibit a mismatch between fasting and postprandial levels of glucose and triglycerides, namely, those with normal or mildly elevated fasting levels but exaggerated postprandial responses, may represent a subgroup at heightened and potentially modifiable risk for both microvascular and macrovascular complications. Validating biomarkers of postprandial dysmetabolism could offer valuable clinical tools for improved risk assessment and personalized therapeutic strategies. This review summarises the unique physiology of triglyceride-rich lipoprotein metabolism after meals and the disruptions that can foster cardiovascular complications. Given the scarcity of targeted therapies, it also discusses emerging treatment candidates and their underlying mechanisms.

References

  1. Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019; 51:794-811. https://doi.org/10.1016/j.immuni.2019.09.020
  2. Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016; 133:187-225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585
  3. Kurti SP, Emerson SR, Rosenkranz SK, et al. Post-prandial systemic 8-isoprostane increases after consumption of moderate and high-fat meals in insufficiently active males. Nutr Res 2017; 39:61-8. https://doi.org/10.1016/j.nutres.2017.02.003
  4. Meessen ECE, Warmbrunn MV, Nieuwdorp M, Soeters MR. Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review. Nutrients 2019; 11. https://doi.org/10.3390/nu11123000
  5. Sasso E, Baticic L, Sotosek V. Postprandial Dysmetabolism and Its Medical Implications. Life (Basel) 2023; 13. https://doi.org/10.3390/life13122317
  6. Leon-Pedroza JI, Gonzalez-Tapia LA, del Olmo-Gil E, et al. [Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice]. Cir Cir 2015; 83:543-51. https://doi.org/10.1016/j.circir.2015.05.041
  7. van Greevenbroek MM, Schalkwijk CG, Stehouwer CD. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 2013; 71:174-87. PMID: 23723111 https://www.ncbi.nlm.nih.gov/pubmed/23723111
  8. Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 2002; 8:1211-7. https://doi.org/10.1038/nm1102-1211
  9. Feingold KR. Introduction to Lipids and Lipoproteins. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, et al., editors. Endotext. South Dartmouth (MA)2000. PMID: 26247089 https://www.ncbi.nlm.nih.gov/pubmed/26247089
  10. Vassilis I. Zannis KK, Angeliki Chroni, Dimitris Kardassis and Eleni E. Zanni. Lipoproteins and atherogenesis. 2004; Loscalzo Ch 08:111-74. http://www.whba1990.org/uploads/4/0/1/1/4011882/loscalzo_book_chapter_zannis_et_al.pdf
  11. Klop B, Proctor SD, Mamo JC, et al. Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. Int J Vasc Med 2012; 2012:947417. https://doi.org/10.1155/2012/947417
  12. Linton MF, Hasty AH, Babaev VR, Fazio S. Hepatic apo E expression is required for remnant lipoprotein clearance in the absence of the low density lipoprotein receptor. J Clin Invest 1998; 101:1726-36. https://doi.org/10.1172/JCI2181
  13. Tudorache IF, Trusca VG, Gafencu AV. Apolipoprotein E - A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput Struct Biotechnol J 2017; 15:359-65. https://doi.org/10.1016/j.csbj.2017.05.003
  14. Beisiegel U. Receptors for triglyceride-rich lipoproteins and their role in lipoprotein metabolism. Curr Opin Lipidol 1995; 6:117-22. https://doi.org/10.1097/00041433-199506000-00002
  15. Linton MF, Tao H, Linton EF, Yancey PG. SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis. Trends Endocrinol Metab 2017; 28:461-72. https://doi.org/10.1016/j.tem.2017.02.001
  16. Kounatidis D, Vallianou NG, Poulaki A, et al. ApoB100 and Atherosclerosis: What's New in the 21st Century? Metabolites 2024; 14. https://doi.org/10.3390/metabo14020123
  17. Boren J, Taskinen MR. Metabolism of Triglyceride-Rich Lipoproteins. Handb Exp Pharmacol 2022; 270:133-56. https://doi.org/10.1007/164_2021_520
  18. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-806. https://doi.org/10.1093/eurheartj/ehab551
  19. Falko JM. Familial Chylomicronemia Syndrome: A Clinical Guide For Endocrinologists. Endocr Pract 2018; 24:756-63. https://doi.org/10.4158/EP-2018-0157
  20. Davidson M, Stevenson M, Hsieh A, et al. The burden of familial chylomicronemia syndrome: Results from the global IN-FOCUS study. J Clin Lipidol 2018; 12:898-907 e2. https://doi.org/10.1016/j.jacl.2018.04.009
  21. Vaverkova H, Karasek D. [Familial combined hyperlipidemia - the most common genetic dyslipidemia in population and in patients with premature atherothrombotic cardiovascular disease]. Vnitr Lek 2018; 64:25-9. https://doi.org/10.36290/vnl.2018.004
  22. Goldstein JL, Schrott HG, Hazzard WR, et al. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973; 52:1544-68. https://doi.org/10.1172/JCI107332
  23. Rose HG, Kranz P, Weinstock M, et al. Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype. Am J Med 1973; 54:148-60. https://doi.org/10.1016/0002-9343(73)90218-0
  24. Veerkamp MJ, de Graaf J, Bredie SJ, et al. Diagnosis of familial combined hyperlipidemia based on lipid phenotype expression in 32 families: results of a 5-year follow-up study. Arterioscler Thromb Vasc Biol 2002; 22:274-82. https://doi.org/10.1161/hq0202.104059
  25. Taghizadeh E, Mardani R, Rostami D, et al. Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: A review. J Cell Biochem 2019; 120:8891-8. https://doi.org/10.1002/jcb.28311
  26. Bello-Chavolla OY, Kuri-Garcia A, Rios-Rios M, et al. Familial Combined Hyperlipidemia: Current Knowledge, Perspectives, and Controversies. Rev Invest Clin 2018; 70:224-36. https://doi.org/10.24875/RIC.18002575
  27. Trinder M, Vikulova D, Pimstone S, et al. Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis 2022; 340:35-43. https://doi.org/10.1016/j.atherosclerosis.2021.11.032
  28. Taghizadeh E, Esfehani RJ, Sahebkar A, et al. Familial combined hyperlipidemia: An overview of the underlying molecular mechanisms and therapeutic strategies. IUBMB Life 2019; 71:1221-9. https://doi.org/10.1002/iub.2073
  29. Schonfeld G, Lin X, Yue P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci 2005; 62:1372-8. https://doi.org/10.1007/s00018-005-4473-0
  30. Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia: liver disease and cardiovascular disease. Curr Opin Lipidol 2020; 31:49-55. https://doi.org/10.1097/MOL.0000000000000663
  31. Twisk J, Gillian-Daniel DL, Tebon A, et al. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 2000; 105:521-32. https://doi.org/10.1172/JCI8623
  32. Andersen LH, Miserez AR, Ahmad Z, Andersen RL. Familial defective apolipoprotein B-100: A review. J Clin Lipidol 2016; 10:1297-302. https://doi.org/10.1016/j.jacl.2016.09.009
  33. Rogozik J, Glowczynska R, Grabowski M. Genetic backgrounds and diagnosis of familial hypercholesterolemia. Clin Genet 2024; 105:3-12. https://doi.org/10.1111/cge.14435
  34. Niu C, Luo Z, Yu L, et al. Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: a meta-analysis. Lipids Health Dis 2017; 16:166. https://doi.org/10.1186/s12944-017-0558-7
  35. Taskinen MR, Matikainen N, Bjornson E, et al. Contribution of intestinal triglyceride-rich lipoproteins to residual atherosclerotic cardiovascular disease risk in individuals with type 2 diabetes on statin therapy. Diabetologia 2023; 66:2307-19. https://doi.org/10.1007/s00125-023-06008-0
  36. Sayols-Baixeras S, Subirana I, Lluis-Ganella C, et al. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum Mol Genet 2016; 25:4556-65. https://doi.org/10.1093/hmg/ddw285
  37. Wei R, Wu Y. Modification effect of fenofibrate therapy, a longitudinal epigenomic-wide methylation study of triglycerides levels in the GOLDN study. BMC Genet 2018; 19:75. https://doi.org/10.1186/s12863-018-0643-6
  38. Guay SP, Brisson D, Lamarche B, et al. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics 2014; 9:718-29. https://doi.org/10.4161/epi.27981
  39. Peng P, Wang L, Yang X, et al. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease. PLoS One 2014; 9:e102265. https://doi.org/10.1371/journal.pone.0102265
  40. Hedman AK, Mendelson MM, Marioni RE, et al. Epigenetic Patterns in Blood Associated With Lipid Traits Predict Incident Coronary Heart Disease Events and Are Enriched for Results From Genome-Wide Association Studies. Circ Cardiovasc Genet 2017; 10:e001487. https://doi.org/10.1161/CIRCGENETICS.116.001487
  41. Mazaheri-Tehrani S, Khoshhali M, Heidari-Beni M, et al. A systematic review and metaanalysis of observational studies on the effects of epigenetic factors on serum triglycerides. Arch Endocrinol Metab 2022; 66:407-19. https://doi.org/10.20945/2359-3997000000472
  42. Braun KVE, Dhana K, de Vries PS, et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics 2017; 9:15. https://doi.org/10.1186/s13148-016-0304-4
  43. Pfeiffer L, Wahl S, Pilling LC, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet 2015; 8:334-42. https://doi.org/10.1161/CIRCGENETICS.114.000804
  44. Campanella G, Gunter MJ, Polidoro S, et al. Epigenome-wide association study of adiposity and future risk of obesity-related diseases. Int J Obes (Lond) 2018; 42:2022-35. https://doi.org/10.1038/s41366-018-0064-7
  45. de Vries MA, Klop B, Janssen HW, et al. Postprandial inflammation: targeting glucose and lipids. Adv Exp Med Biol 2014; 824:161-70. https://doi.org/10.1007/978-3-319-07320-0_12
  46. Van Oostrom AJ, Sijmonsma TP, Rabelink TJ, et al. Postprandial leukocyte increase in healthy subjects. Metabolism 2003; 52:199-202. https://doi.org/10.1053/meta.2003.50037
  47. Wanten G, van Emst-De Vries S, Naber T, Willems P. Nutritional lipid emulsions modulate cellular signaling and activation of human neutrophils. J Lipid Res 2001; 42:428-36. https://doi.org/10.1016/S0022-2275(20)31667-9
  48. Bentley C, Hathaway N, Widdows J, et al. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis 2011; 21:871-8. https://doi.org/10.1016/j.numecd.2010.02.019
  49. Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 1988; 37:832-7. https://doi.org/10.2337/diab.37.6.832
  50. Alipour A, van Oostrom AJ, Izraeljan A, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 2008; 28:792-7. https://doi.org/10.1161/atvbaha.107.159749
  51. Tertov VV, Kalenich OS, Orekhov AN. Lipid-laden white blood cells in the circulation of patients with coronary heart disease. Exp Mol Pathol 1992; 57:22-8. https://doi.org/10.1016/0014-4800(92)90045-d
  52. van Oostrom AJ, Plokker HW, van Asbeck BS, et al. Effects of rosuvastatin on postprandial leukocytes in mildly hyperlipidemic patients with premature coronary sclerosis. Atherosclerosis 2006; 185:331-9. https://doi.org/10.1016/j.atherosclerosis.2005.06.045
  53. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38:2459-72. https://doi.org/10.1093/eurheartj/ehx144
  54. Lombard DB, Chua KF, Mostoslavsky R, et al. DNA repair, genome stability, and aging. Cell 2005; 120:497-512. https://doi.org/10.1016/j.cell.2005.01.028
  55. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007; 3:640-9. https://doi.org/10.1038/nchembio.2007.38
  56. Huang YC, Wang CY. Telomere Attrition and Clonal Hematopoiesis of Indeterminate Potential in Cardiovascular Disease. Int J Mol Sci 2021; 22. https://doi.org/10.3390/ijms22189867
  57. Walne AJ, Dokal I. Advances in the understanding of dyskeratosis congenita. Br J Haematol 2009; 145:164-72. https://doi.org/10.1111/j.1365-2141.2009.07598.x
  58. Cawthon RM, Smith KR, O'Brien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003; 361:393-5. https://doi.org/10.1016/S0140-6736(03)12384-7
  59. Wong LS, Huzen J, van der Harst P, et al. Anaemia is associated with shorter leucocyte telomere length in patients with chronic heart failure. Eur J Heart Fail 2010; 12:348-53. https://doi.org/10.1093/eurjhf/hfq007
  60. Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 2005; 23:97-104. https://doi.org/10.1097/00004872-200501000-00018
  61. Yang DG, Liu L, Zheng XY. Cyclin-dependent kinase inhibitor p16(INK4a) and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res Rev 2008; 7:137-46. https://doi.org/10.1016/j.arr.2008.02.001
  62. Haendeler J, Hoffmann J, Diehl JF, et al. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 2004; 94:768-75. https://doi.org/10.1161/01.RES.0000121104.05977.F3
  63. Senguttuvan NB, Subramanian V, Venkatesan V, et al. Clonal hematopoiesis of indeterminate potential (CHIP) and cardiovascular diseases-an updated systematic review. J Genet Eng Biotechnol 2021; 19:105. https://doi.org/10.1186/s43141-021-00205-3
  64. Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003; 22:131-9. https://doi.org/10.1093/emboj/cdg013
  65. Higgins V, Adeli K. Postprandial Dyslipidemia: Pathophysiology and Cardiovascular Disease Risk Assessment. EJIFCC 2017; 28:168-84. https://www.ncbi.nlm.nih.gov/pubmed/29075168
  66. Nordestgaard BG, Langsted A, Mora S, et al. Fasting Is Not Routinely Required for Determination of a Lipid Profile: Clinical and Laboratory Implications Including Flagging at Desirable Concentration Cutpoints-A Joint Consensus Statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2016; 62:930-46. https://doi.org/10.1373/clinchem.2016.258897
  67. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007; 298:309-16. https://doi.org/10.1001/jama.298.3.309
  68. Karpe F, Boquist S, Tang R, et al. Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides. J Lipid Res 2001; 42:17-21. https://doi.org/10.1016/S0022-2275(20)32331-2
  69. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979; 60:473-85. https://doi.org/10.1161/01.CIR.60.3.473
  70. Dallinga-Thie GM, Kroon J, Boren J, Chapman MJ. Triglyceride-Rich Lipoproteins and Remnants: Targets for Therapy? Curr Cardiol Rep 2016; 18:67. https://doi.org/10.1007/s11886-016-0745-6
  71. Eiselein L, Wilson DW, Lame MW, Rutledge JC. Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol 2007; 292:H2745-53. https://doi.org/10.1152/ajpheart.00686.2006
  72. Fielding CJ. Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration. FASEB J 1992; 6:3162-8. https://doi.org/10.1096/fasebj.6.13.1327930
  73. Proctor SD, Vine DF, Mamo JC. Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy. Arterioscler Thromb Vasc Biol 2004; 24:2162-7. https://doi.org/10.1161/01.ATV.0000143859.75035.5a
  74. Domoto K, Taniguchi T, Takaishi H, et al. Chylomicron remnants induce monocyte chemoattractant protein-1 expression via p38 MAPK activation in vascular smooth muscle cells. Atherosclerosis 2003; 171:193-200. https://doi.org/10.1016/j.atherosclerosis.2003.08.016
  75. Morimoto S, Fujioka Y, Hosoai H, et al. The renin-angiotensin system is involved in the production of plasminogen activator inhibitor type 1 by cultured endothelial cells in response to chylomicron remnants. Hypertens Res 2003; 26:315-23. https://doi.org/10.1291/hypres.26.315
  76. Behbodikhah J, Ahmed S, Elyasi A, et al. Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021; 11. https://doi.org/10.3390/metabo11100690
  77. Nayak P, Panda S, Thatoi PK, et al. Evaluation of Lipid Profile and Apolipoproteins in Essential Hypertensive Patients. J Clin Diagn Res 2016; 10:BC01-BC4. https://doi.org/10.7860/JCDR/2016/20985.8626
  78. Marchini T, Malchow S, Caceres L, et al. Circulating Autoantibodies Recognizing Immunodominant Epitopes From Human Apolipoprotein B Associate With Cardiometabolic Risk Factors, but Not With Atherosclerotic Disease. Front Cardiovasc Med 2022; 9:826729. https://doi.org/10.3389/fcvm.2022.826729
  79. Lairon D, Lopez-Miranda J, Williams C. Methodology for studying postprandial lipid metabolism. Eur J Clin Nutr 2007; 61:1145-61. https://doi.org/10.1038/sj.ejcn.1602749
  80. American Diabetes A. (2) Classification and diagnosis of diabetes. Diabetes Care 2015; 38 Suppl:S8-S16. https://doi.org/10.2337/dc15-S005
  81. Ceriello A, Falleti E, Motz E, et al. Hyperglycemia-induced circulating ICAM-1 increase in diabetes mellitus: the possible role of oxidative stress. Horm Metab Res 1998; 30:146-9. https://doi.org/10.1055/s-2007-978854
  82. Lacroix S, Rosiers CD, Tardif JC, Nigam A. The role of oxidative stress in postprandial endothelial dysfunction. Nutr Res Rev 2012; 25:288-301. https://doi.org/10.1017/s0954422412000182
  83. Derosa G, D'Angelo A, Salvadeo SA, et al. Oral glucose tolerance test effects on endothelial inflammation markers in healthy subjects and diabetic patients. Horm Metab Res 2010; 42:8-13. https://doi.org/10.1055/s-0029-1237728
  84. Nappo F, Esposito K, Cioffi M, et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 2002; 39:1145-50. https://doi.org/10.1016/s0735-1097(02)01741-2
  85. Bloomer RJ, Kabir MM, Marshall KE, et al. Postprandial oxidative stress in response to dextrose and lipid meals of differing size. Lipids Health Dis 2010; 9:79. https://doi.org/10.1186/1476-511X-9-79
  86. Wang F, Lu H, Liu F, et al. Consumption of a liquid high-fat meal increases triglycerides but decreases high-density lipoprotein cholesterol in abdominally obese subjects with high postprandial insulin resistance. Nutr Res 2017; 43:82-8. https://doi.org/10.1016/j.nutres.2017.05.010
  87. Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50:609-13. https://doi.org/10.2337/diabetes.50.3.609
  88. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86:3717-23. https://doi.org/10.1210/jcem.86.8.7750
  89. Kiec-Klimczak M, Malczewska-Malec M, Razny U, et al. Assessment of incretins in oral glucose and lipid tolerance tests may be indicative in the diagnosis of metabolic syndrome aggravation. J Physiol Pharmacol 2016; 67:217-26. PMID:27226181 https://www.ncbi.nlm.nih.gov/pubmed/27226181
  90. Chiesa ST, Charakida M, Georgiopoulos G, et al. Glycoprotein Acetyls: A Novel Inflammatory Biomarker of Early Cardiovascular Risk in the Young. J Am Heart Assoc 2022; 11:e024380. https://doi.org/10.1161/JAHA.121.024380
  91. Mazidi M, Valdes AM, Ordovas JM, et al. Meal-induced inflammation: postprandial insights from the Personalised REsponses to DIetary Composition Trial (PREDICT) study in 1000 participants. Am J Clin Nutr 2021; 114:1028-38. https://doi.org/10.1093/ajcn/nqab132
  92. Johansen MO, Afzal S, Vedel-Krogh S, et al. From plasma triglycerides to triglyceride metabolism: effects on mortality in the Copenhagen General Population Study. Eur Heart J 2023; 44:4174-82. https://doi.org/10.1093/eurheartj/ehad330
  93. Landau BR. Glycerol production and utilization measured using stable isotopes. Proc Nutr Soc 1999; 58:973-8. https://doi.org/10.1017/s0029665199001287
  94. Silva JCP, Marques C, Martins FO, et al. Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue. Metab Eng 2019; 56:69-76. https://doi.org/10.1016/j.ymben.2019.08.018
  95. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 1999; 15:412-26. https://doi.org/10.1002/(sici)1520-7560(199911/12)15:6%3C412::aid-dmrr72%3E3.0.co;2-8
  96. Miles JM, Park YS, Walewicz D, et al. Systemic and forearm triglyceride metabolism: fate of lipoprotein lipase-generated glycerol and free fatty acids. Diabetes 2004; 53:521-7. https://doi.org/10.2337/diabetes.53.3.521
  97. Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 2006; 53:482-91. https://doi.org/10.1016/j.phrs.2006.03.009
  98. Luo F, Das A, Khetarpal SA, et al. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med 2024; 34:215-22. https://doi.org/10.1016/j.tcm.2023.01.008
  99. Raschi E, Casula M, Cicero AFG, et al. Beyond statins: New pharmacological targets to decrease LDL-cholesterol and cardiovascular events. Pharmacol Ther 2023; 250:108507. https://doi.org/10.1016/j.pharmthera.2023.108507

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached