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Introduction

Since the discovery of statins, the landscape of cardiovascular dis-
ease (CVD) management has changed drastically, having shown une-
quivocally that reducing low-density lipoprotein cholesterol (LDL-C) 
levels results in a reduced incidence of CV events. The causality of 
LDL-C in the aetiology of atherosclerotic-related CVDs (ASCVDs) 
has been clearly established over the last decades (1, 2), with con-
cordant observations from a variety of sources spanning from basic 
research, to genetic and clinical studies, further strengthening the 
evidence that the pharmacological control of plasma LDL-C levels 
is the major route to prevent CV outcomes, independently of the 
drug used to lower LDL-C (3, 4). Another major finding arising from 
clinical trials is that therapy intensification, either as statin dose/type 
or combination therapy, associates with significant reduction of CV 
event incidence in high and very high risk patients. Altogether these 
observations have led to intensify the research of new non-statin 
drugs having mechanisms of action that can “complement” the effect 
of statins; as a result, several alternative approaches for the treatment 
of hypercholesterolemia became available for therapy with unprece-
dented speed, thus enriching the tools for therapy to lower LDL-C.
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ABSTRACT
The causal role of low-density lipoprotein cholesterol LDL-C in atherosclerotic-related cardiovascular disease (ASCVD) 
has been undoubtedly established over the last decades, and lowering plasma LDL-C levels represents the main ap-
proach to reduce the risk of cardiovascular (CV) events. A large number of observations has definitely proven that 
the protective effect is independent of the drug used to lower LDL-C, with a continuous linear reduction of CV risk 
with further LDL-C reductions. Although high-intensity statin therapy may significantly reduce CV event incidence, 
frequently statins are insufficient to achieve the large reductions recommended by current guidelines for high and very 
high risk patients. 
Several non-statin drugs, having mechanisms of action complementary to that of statins, are now available, and 
include ezetimibe, monoclonal antibodies targeting PCSK9, and, more recently, inclisiran, bempedoic acid, and 
evinacumab. Combining these drugs based on the recommendations by current and future guidelines should be con-
sidered for optimal risk reduction, although several gaps in clinical practice remain to be filled.
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In this context, statins still represent the cornerstone for the 
treatment of hypercholesterolemia, having shown approximately a 
20% reduction in the risk of CV events per each mmol/L LDL-C 
reduction (5). Despite that, this approach might not be enough to 
reach the recommended goals in all individuals, especially when tak-
ing into consideration the lower LDL-C goals introduced by the most 
recent guidelines for the management of hypercholesterolemia (6). 
The need of additional approaches, together with the observation 
that, while there is no evidence of detrimental health effects associat-
ed with very low LDL-C-levels, there is a continuous linear reduction 
of CV risk (7), led to the development of other cholesterol-lowering 
drugs, including ezetimibe, monoclonal antibodies targeting PCSK9, 
and, more recently, inclisiran, bempedoic acid, and evinacumab.

The pharmacology of statins
Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl 

coenzyme A reductase(HMG-CoAR), the rate-limiting enzyme of 
cholesterol synthesis pathway. The inhibition of this enzyme results 
in the reduction of intracellular cholesterol synthesis, which, in turn, 
upregulates the hepatic surface expression of low-density lipopro-
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tein receptor (LDLR), increases the uptake of LDL particle and re-
duces plasma LDL-C levels. A large number of randomized clinical 
trials have shown that statin-induced LDL-C lowering translates into 
a clinical benefit, with reduction of cardiovascular morbidity and 
mortality, in primary as well as secondary prevention (5, 8-13). More 
specifically, statin therapy reduces the risk of major atherosclerotic 
vascular events by ~20% per mmol/l (~39 mg/dL) absolute reduc-
tion in LDL-C (5), with the absolute benefit being determined by 
the individual CV risk. Compared with less intensive regimens, more 
intensive statin regimens were associated with a further 15% reduc-
tion in major cardiovascular events (MACE), the first demonstration 
that greater reductions in LDL-C produce further reductions in the 
incidence of MACE (Figure 1) (8).

Statin therapy has been shown to be effective in a wide range 
of patient categories. First of all, the proportional effects of statins 
on MACE is comparable in women and men having equivalent base-
line risk of cardiovascular disease, as shown by a meta-analysis of data 
from 174,000 participants in 27 RCTs (14). This represents a relevant 
finding, as previous clinical trials and meta-analyses generated uncer-
tainty about the effects of statin therapy in women, largely due to the 
lower number of women among participants in clinical trials. Statin 
therapy is effective among patients with diabetes, a condition con-
ferring an increased CV risk: statin-treated diabetic patients show a 
significant 21% proportional reduction in MACE per mmol/l reduc-
tion in LDL-C (comparable to that observed in non-diabetic individ-

uals) (15), but, being the absolute risk of CV events and death much 
higher compared to nondiabetic subjects, the same absolute reduc-
tion in LDL-C will result in a greater absolute CV risk reduction. In 
addition, the benefit of statin therapy applies both to high CV risk 
and low CV risk patients: the analysis of participants in 22 RCT of 
statins versus control, divided into categories of baseline 5-year risk 
of MACE, showed that the proportional reductions in MACE per 1 
mmol/L LDL-C reduction in the two lowest risk categories (<5% and 
≥5% to <10%) was at least as large as for higher risk participants (16). 
Again, people at highest risk have the highest absolute risk reduc-
tion per mmol/l LDL-C reduction, resulting in 61 MACE avoided per 
1000 compared with 6 MACE avoided per 1000 in the lowest CV risk 
category over 5 years (16). Special consideration must be given to 
patients with chronic kidney disease (CKD): although statin therapy 
is effective in preventing coronary heart disease (CHD) and stroke 
in patients with mild-to-moderate CKD, in those with more advanced 
CKD or even on dialysis the relative reductions in MACE achieved 
with statin therapy became smaller as eGFR declined, with little evi-
dence of benefit in patients on dialysis (17).

From these studies, a linear relationship between proportional 
reduction in the incidence of major cardiovascular events and mean 
absolute LDL-C reduction has been derived, indicating that the lower 
the LDL-C levels achieved, the greater the clinical benefit. There are, 
however, some challenges remain in clinical practice regarding the 
potential unfavourable effects related to the long-term daily use of 

Figure 1 | Mechanism of action (A), structures (B), and LDL-C-lowering properties (C, D) of statins. (A) Statins inhibit 3-hydroxy-3-methylglutaryl 
coenzyme A reductase(HMG-CoAR), the rate-limiting enzyme of cholesterol synthesis pathway, thus reducing intracellular cholesterol synthesis 
and upregulating LDL-C levels. (B) Chemical structures of most commonly used statins. (C) LDL-C % reduction with different statins and doses. 
(D) Cardiovascular outcome incidence in patients treated with statins vs placebo or with more intensive vs less intensive statin regimens.
HMG-CoA, hydroxyl-methyl-glutaryl coenzyme A; HMG-CoAR, hydroxyl-methyl-glutaryl coenzyme A reductase; HR, hazard ratio; LDL-C, low-den-
sity lipoprotein cholesterol.
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statins. Among these potentially negative effects, the most commonly 
studied is the occurrence of muscle-related adverse events and an in-
creased incidence of new-onset diabetes. Statin-intolerance is referred 
as the inability to tolerate an effective dose of statin due to the occur-
rence of muscular symptoms while taking statin (18); such adverse 
events limit the effectiveness of statin therapy, and commonly lower 
the adherence to therapy or drug discontinuation, an effect that is 
more frequently observed in the everyday clinical practice rather 
than in clinical trials. Although a true statin intolerance condition is 
much rarer than reported, due to a “nocebo effect” (19), it represents 
a relevant issue as it places patients at high risk for CV events (20). 
Furthermore, a link between statin therapy (and in particular high 
intensity statin dose) and an increased risk in new-onset diabetes has 
been reported in several clinical trials and meta-analyses (21-25); such 
an increased risk, however, is modest and emerges mostly in patients 
with insulin resistance or prediabetes (26), and the clinical benefit in 
terms of CV event risk reduction largely exceeds this risk. This obser-
vation is supported by the results of a mendelian randomization analy-
sis showing that variants in HMGCR (the gene encoding HMG-CoAR) 
associated with low LDL-C levels and a reduced risk of CV events also 
associate with an increased risk of diabetes (13% for each 10 mg/dL 
decrease in LDL-C) in patients with impaired fasting glucose (≥100 
mg/dL), but not in those with normal fasting glucose (27).

The pharmacology of ezetimibe
Niemann-Pick C1L1 (NPC1L1) protein is a sterol transporter 

highly expressed in intestinal epithelial cells and involved in the in-
testinal absorption of cholesterol (Figure 2A), thus contributing to 
the regulation of cholesterol plasma levels.(28, 29) Subjects carrying 
inactivating mutations in NPC1L1 have lower LDL-C levels compared 
with noncarriers, and a 53% reduction in the risk of CHD, suggesting 
this protein as a pharmacological target (30).

Ezetimibe, by interfering with the activity of NPC1L1, inhibits 
the absorption of biliary and dietary cholesterol. This drug exhibit 
a complementary mechanism of action as compared to statins, and 

their combination results in an LDL-C reduction greater than those 
observed using these two drugs in monotherapy, due to their mech-
anisms of action. In fact, statins, by inhibiting cholesterol synthesis 
pathway, produce the upregulation of hepatic LDLR and increase the 
uptake of LDL from the circulation. In turn, this causes a feedback 
mechanism resulting in an increased intestinal cholesterol absorp-
tion and a partially reduced efficacy of statin therapy. On the oth-
er hand, ezetimibe, by inhibiting intestinal cholesterol absorption, 
induces a compensatory mechanism increasing cholesterol synthesis 
in the intestine and the liver (31). When statins are combined with 
ezetimibe, both cholesterol synthesis and absorption are reduced, re-
sulting in a further 15–20% LDL-C level decrease,(32-34) and adding 
ezetimibe to a statin is much more effective than doubling the dose 
of the statin, which only provides an additional 5-6% reduction in 
LDL-C (35, 36). The efficacy of this combination has been proved 
also in diabetic patients, who achieved greater LDL-C reductions 
compared with those observed in patients doubling the statin dose 
(37, 38), and in patients with familial hypercholesterolemia (FH) 
showing a residual LDLR activity (39-41).

The first demonstration that this combination has also a clinical 
benefit derived from the IMPROVE-IT trial, that compared the effect 
of a 6-year administration of ezetimibe+simvastatin or simvastatin 
alone in patients with a recent acute coronary syndrome (42). LDL-C 
level was further reduced by 24% with the combination therapy com-
pared with simvastatin alone, translating into a significant 6.4% re-
duced risk of the primary composite endpoint (Figure 2B, 2C) (42). 
A secondary analysis of this trial showed an even higher benefit in 
specific subgroups of patients, such as women, aged people, and di-
abetic patients (43-45).

At present, the combination statin+ezetimibe represents a main 
approach for the treatment of hypercholesterolemia, and guidelines 
indicate that the combination will be used as a second step when pa-
tients cannot reach the recommended goals (or cannot tolerate an 
effective dose of statin). For a more detailed description of findings 
from clinical trials using ezetimibe, please see the paper by H. Bays 
in this issue. 

Figure 2 | Mechanism of action of ezetimibe 
(A) and results from the IMPROVE-IT (B, 
C). (A) NPC1L1 is localized on the brush 
border of the enterocytes and mediates the 
uptake of dietary and biliary cholesterol. 
Ezetimibe inhibits the activity of NPC1L1. 
(B) LDL-C percent change and incidence 
of cardiovascular events in patients receiving 
simvastatin monotherapy or the combination 
ezetimibe+simvastatin (IMPROVE-IT trial). 
NPC1L1, Niemann-Pick C1-Like 1; HR, haz-
ard ratio; LDL-C, low-density lipoprotein 
cholesterol.
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The pharmacology of PCSK9 inhibitors

Proprotein convertase subtilisin kexin 9 (PCSK9) is a serine 
protease highly expressed in the liver, intestine, kidney, and brain 
(46); it plays a crucial role in regulating the expression of hepatic 
LDLR by targeting it to degradation and, as a consequence, modu-
lates plasma LDL-C levels (Figure 3A) (47-49). Individuals carrying 
loss-of-function mutations in PCSK9 associated with lower levels of 
LDL-C also have a significantly reduced CV risk (50-54), whereas 
genetic gain of function variants associated with higher levels of 
LDL-C confer an increased risk of premature cardiovascular disease 
and are a cause of FH (55-57). These observations have suggested 
PCSK9 as a pharmacological target for the control of dyslipidaemia, 
and great research efforts have generated two monoclonal antibod-
ies targeting circulating PCSK9 and, more recently, a gene silencing 
approach able to control more efficiently the production of PCSK9 
only in the liver. In fact, despite PCSK9 is produced mainly by the 
liver, which contributes for circulating PCSK9 levels, other tissues 
express this protein, raising uncertainties on the potentially harm-
ful effects of the pharmacological inhibition of PCSK9 in extrahe-
patic tissues.

Two monoclonal antibodies (evolocumab and alirocumab) have 
been developed and approved for the treatment of hypercholester-
olemia, and are recommended by guidelines as an add-on to current 
lipid-lowering therapy when patients with high or very high CV risk 
cannot achieve the recommended goals with maximally tolerated 
dose of statin with or without ezetimibe; this recommendation stems 
on the results of randomized clinical trials having shown a substantial 
cholesterol-lowering efficacy (50%-60%) and a consequent clinical 
benefit. The development of an additional antibody (bococizum-

ab) was halted due to the production of anti-drug antibodies that 
reduced the efficacy of the treatment.

Evolocumab. Evolocumab was evaluated in several phase 2 clinical 
trials, showing a cholesterol-lowering efficacy either as monotherapy 
or as add-on to ongoing lipid-lowering therapy (LLT) in different 
groups of patients (58-60). The evolocumab clinical trial program 
PROFICIO included phase 3 clinical trials that assessed the effective-
ness of evolocumab in comparison with placebo or ezetimibe across 
a wide range of patient categories. Evolocumab alone was more ef-
fective than placebo or ezetimibe in reducing LDL-C levels (61), and 
adding evolocumab to the ongoing LLT resulted in a greater reduc-
tion in LDL-C (60%-65%) than adding ezetimibe (15%-20%) or pla-
cebo (62). Evolocumab was shown to be effective in statin-intolerant 
patients (63, 64), and in patients with heterozygous FH (65), whereas 
in HoFH patients the reduction was smaller (20-30%) and strictly 
related to the presence of a residual LDLR activity (as for all drugs 
acting by increasing LDLR expression) (60, 66, 67). The evaluation 
of the long-term effects of evolocumab showed a persistent hypocho-
lesterolemic effect up to 5 years, and an overall safe profile, with no 
neutralizing antibodies detected (68).

The clinical benefit of PCSK9 inhibition has been addressed in 
the FOURIER trial, that evaluated the effect of evolocumab or place-
bo added to a background of statin therapy in patients with ASCVD 
and LDL-C ≥70 mg/dL (69). At week 48, LDL-C levels were reduced 
by 59% which translated into a 15% lower risk of the primary end-
point (a composite of cardiovascular death, myocardial infarction, 
stroke, hospitalization for unstable angina, or coronary revasculari-
zation) (Figure 3B, 3C) and by 20% the secondary endpoint (a com-
posite of cardiovascular death, myocardial infarction, or stroke) after 

Figure 3 | Mechanism of action of mAbs to PCSK9 (A) and results from FOURIER and ODYSSEY OUTCOMES trials (B, C). (A) monoclonal an-
tibodies to PCSK9 bind extracellular (secreted) PCSK9, thus preventing its binding to LDLR and the subsequent degradation of LDLR. LDL-C 
percent change (B) and incidence of cardiovascular events (C) with evolocumab (FOURIER) and alirocumab (ODYSSEY OUTCOMES).
LDL, low density lipoprotein; LDLR, low-density lipoprotein receptor; mAbs, monoclonal antibodies; PCSK9, proprotein convertase subtilisin 
kexin 9; HR, hazard ratio.
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a median follow-up of 2.2 years (69). Relative risk reductions were 
comparable across patient categories, but larger absolute risk reduc-
tions were observed among patients at higher baseline risk, such as 
patients with diabetes (70), peripheral artery disease (71), advanced 
chronic kidney disease (72), recent MI (<2y), multiple prior MIs, or 
residual multivessel coronary artery disease (73), or elevated poly-
genic risk score (74). The use of monoclonal antibodies targeting 
PCSK9, for the first time, allowed patients to achieve very low LDL-C 
levels (<0.5 mmol/L (<~20 mg/dL), without specific safety con-
cerns related to the low levels of LDL cholesterol achieved (75), and 
further supported the hypothesis of a linear relationship between 
LDL-C levels and CV outcomes even for very low LDL-C levels (1). 
Of note, no adverse cognitive effects were reported among patients 
treated with evolocumab over a median of 19 months (76), neither 
in those who achieved very low LDL-C levels (75).

Alirocumab. Based on the results obtained in phase 2 trials, sug-
gesting substantial reductions in LDL-C levels in alirocumab-treated 
patients, ranging from 40% to 73% (77-80), the ODYSSEY program 
was started to assess the efficacy and safety of alirocumab alone or in 
combination with other LLT across different subgroups of hypercho-
lesterolemic patients. The administration of alirocumab 75 mg Q2W 
or ezetimibe 10 mg/day showed that LDL-C levels were reduced in 
both groups compared with placebo, but the reduction observed 
among alirocumab-treated patients was higher than that observed 
among ezetimibe-treated patients (47.2% vs 15.6%) (81). The high-
er LDL-C-lowering efficacy of alirocumab has been shown also when 
given in combination with the ongoing therapy (maximum tolerated 
statin±other LLT) in high CV risk populations, when compared with 
either placebo (82, 83) or ezetimibe (84). Furthermore, adding aliro-
cumab to atorvastatin or rosuvastatin was more effective than adding 
ezetimibe, or doubling the statin dose (85, 86). Finally, alirocumab 
can represent a valuable approach to reduce significantly hypercho-
lesterolemia in specific groups of patients, such as statin-intolerant 
patients, in whom alirocumab reduced LDL-C levels substantially 
more than ezetimibe (45% and 14.6% at week 24, respectively) (87), 
and in FH (83, 88, 89).

The clinical benefit of alirocumab-based therapy was tested in 
an outcome trial (ODYSSEY OUTCOMES) that recruited patients 
with a recent acute coronary syndrome and LDL-C levels not at tar-
get despite high-intensity statin therapy (90). Alirocumab reduced 
LDL-C levels by 62.7% at 4 months and 54.7% at 48 months (90). 
After a median follow-up of 2.8 years, the risk of the primary end-
point (a composite of death from coronary heart disease, nonfatal 
myocardial infarction, fatal or nonfatal ischemic stroke, or unstable 
angina requiring hospitalization) was significantly reduced by 15% 
in alirocumab treated patients (Figure 3B, 3C); individuals with the 
highest baseline LDL-C levels (≥100 mg/dL) achieved the highest 
absolute risk reduction (90). Among participants in this study, those 
who did not receive background statin therapy had higher base-
line LDL-C levels and were at higher risk of recurrent events, but 
also experienced a greater absolute LDL-C reduction and absolute 
MACE risk reduction (91). The beneficial effect of alirocumab was 
independent of patient age, but, because the higher absolute risk 
in older individuals, the absolute benefit deriving from alirocumab 
treatment increased with advancing age (92). An analysis of the OD-
YSSEY OUTCOMES trial using a polygenic risk score (PRS) for CAD 
showed that patients having a high PRS have a higher incidence of 
MACE than those with lower PRS, but also derive a larger absolute 
and relative risk reduction when treated with alirocumab (93), sug-
gesting the potential of using PRS to stratify patients and identify 
those who may benefit more from a more intensive cholesterol-low-
ering approach. 

Altogether, the results obtained in RCTs have substantiated 
PCSK9 inhibitors as an effective and safe approach to further reduce 
the CV risk in several groups of patients, thanks to a remarkable and 
sustained reduction of LDL-C levels beyond that obtained with stat-
ins±other LLT, with patients at increased CV risk having the greatest 
absolute benefit. As per the safety a major concern in statin therapy 
is the increased risk of new-onset diabetes. Although the mechanism 
by which anti-PCSK9 mAbs increase LDLR differs from that of statins, 
it is well established that LDLR plays a role in cholesterol metabo-
lism in pancreatic beta cells (94) and indeed PCSK9 deficiency has 
been associated with an increased risk of new onset diabetes both in 
animal models and humans (27, 95). To date, results from an exper-
imental model suggest that locally produced rather than circulating 
PCSK9 plays a role in the homeostasis of cholesterol in beta cells, and 
thus the inhibition of PCSK9 by mAbs should not affect this pathway; 
accordingly, evolocumab and alirocumab treatments do not appear 
to increase the risk of new-onset diabetes and do not worsen glycae-
mia (70, 96-100).

New cholesterol-lowering drugs

Inclisiran. Over the last few years, gene-based approaches target-
ing key players in the metabolism of lipids, and in particular LDL, 
led to the development and approval of inclisiran (101). Inclisiran is 
a small interfering RNA (siRNA) targeting PCSK9 mRNA thus inhib-
iting the intracellular production of PCSK9 (Figure 4A), in contrast 
with monoclonal antibodies against PCSK9 which bind and inhibit 
extracellular, circulating PCSK9. 

Different experimental models have shown a rapid, durable, and 
reversible reduction in circulating PCSK9 and LDL-C levels with a sin-
gle dose of a siRNA targeting PCSK9 (a precursor of inclisiran) (102); 
next, healthy volunteers who received a single intravenous dose of 
this siRNA showed a mean 70% reduction in circulating PCSK9 plas-
ma levels and a 40% reduction in LDL-C levels (103). The N-acetyl-
galactosamine (GalNAc) modification of the double-stranded mol-
ecule, leveraging on the asialoglycoprotein receptor for its uptake, 
ensures a prompt and specific uptake by the liver, where this receptor 
is abundantly expressed (while only minimally expressed in extrahe-
patic tissues). The introduction of modifications that have led to the 
development of the GalNAc-siRNA conjugate (inclisiran) has largely 
improved the administration, increased the potency of the drug (al-
lowing the use of lower doses), and reduced the potential for side ef-
fects. Following the demonstration of a dose-dependent reduction of 
plasma PCSK9 levels (up to 83.8%) and LDL-C levels (up to 59.7%) in 
healthy volunteers, inclisiran has been evaluated in the ORION clini-
cal program that includes phase 2 and 3 clinical trials, some of which 
are still ongoing (Figure 4A). The phase 2 trial ORION-1 showed for 
the first time that inclisiran given as a single dose or two doses (at days 
1 and 90) was effective in reducing LDL-C levels in hypercholester-
olemic patients at high CV risk (104). Reduced levels of PCSK9 and 
LDL-C were maintained up to day 240 in inclisiran-treated patients 
(104), and one year after administration of either a single dose or two 
doses of inclisiran LDL-C were persistently low, with a 50% LDL-C 
reduction being maintained for at least 6 months after 2 doses of 
300mg inclisiran (105). The rate of adverse events was similar in incli-
siran and placebo groups, and injection-site reactions were rare and 
similar to those reported with monoclonal antibodies (104, 106). The 
ongoing open-label extension study of ORION-1 (ORION-3) is com-
paring the long-term effect inclisiran 300 mg administered on day 1 
and every 180 day thereafter or evolocumab 140 mg every 2 weeks for 
up to 4 years (NCT03060577); the trial is expected to be completed 
in 2022. An interim analysis at ~22 months reported a 51% reduction 

https://clinicaltrials.gov/ct2/show/NCT03060577?term=orion-3+inclisiran&draw=2&rank=1
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in LDL-C levels in all patients, with a time-averaged lowering of ~60 
mg/dL, and a good safety profile (107).

Three phase 3 trials have reported a significant efficacy of in-
clisiran in patients with HeFH (108), ASCVD, or an ASCVD risk 
equivalent taking a stable LLT (109). HeFH patients showed a ~40% 
reduction in LDL-C levels with inclisiran 300 mg injected on days 
1, 90, 270, and 450 (compared with a 8.2% increase with placebo, 
with a between-group difference of -47.9%) (108). Similar reductions 
were achieved in the ORION-10 and -11 trials (52.3% and 53.8% be-
tween-group differences, respectively), independently of the gender, 
age, intensity of statin treatment, and underlying co-morbidities 
(109). Based on the observation that inclisiran significantly reduc-
es PCSK9 levels also in 4 patients with HoFH in the ORION-2 pilot 
study, but lowers LDL-C levels at an extent related to the type of caus-
ative mutation (110), the ORION-5 trial (NCT03851705) has evalu-
ated the effect of the administration of inclisiran or placebo in 45 
HoFH patients in a 6-month double blind period, after which all pa-
tients have received inclisiran for an 18-month open-label follow-up 
period; the results of this study are now expected. The ongoing ORI-
ON-4 trial will establish whether inclisiran 300 mg may safely reduce 
the risk of major atherosclerotic cardiovascular events in ≥15,000 
patients with pre-existing ASCVD during a median treatment dura-
tion of 5 years (NCT03705234). Estimated primary completion date 
is December 2024.

Bempedoic acid. Bempedoic acid is a recently developed lipid-low-
ering drug that inhibits adenosine triphosphate-citrate lyase (ACL), 

an enzyme involved in cholesterol biosynthesis (Figure 4B). The 
activity of this drug produces an upregulation of hepatic LDLR ex-
pression, leading to a reduction of circulating LDL-C levels (111). 
The potential clinical benefit of bempedoic acid therapy is suggested 
by the observation that genetic variants in ACLY (the gene encod-
ing ACL) associated with lower LDL-C levels predict a reduced risk 
of cardiovascular disease (112). Being a pro-drug, bempedoic acid 
needs to be converted into the active form by very-long chain acyl-
CoA synthetase (ACSVL1), an enzyme highly expressed in hepato-
cytes but not detectable in skeletal muscles. This represents an ad-
vantageous characteristic of bempedoic acid, as it should avoid any 
muscle-related adverse effects, which are instead frequently reported 
with statin therapy, conferring to this drug a potential role for use in 
patients who cannot tolerate an effective dose of statin. 

Phase 2 clinical trials have shown that bempedoic acid signifi-
cantly reduces LDL-C levels either in monotherapy or in combina-
tion with a statin or ezetimibe. When given alone, bempedoic acid 
dose-dependently reduced LDL-C levels (form 17.9% up to 26.6%) 
and improved lipid profile (113). Maximum LDL-C lowering was 
achieved after 2 weeks and was maintained for the course of the trial. 
CRP was significantly reduced among patients treated with bempe-
doic acid (~20% at all doses), but the reduction was more marked 
in individuals with higher CRP at baseline (≥2 mg/l), who reported 
reductions from 43% to 63.5% (compared to 7.0% reduction with 
placebo) (113). In patients with hypercholesterolemia and diabe-
tes mellitus bempedoic acid determined an even greater reduction 

Figure 4 | New LDL-C-lowering drugs. Mechanism of action and LDL-C-lowering properties of inclisiran (A), bempedoic acid (B), evinacumab (C).
LDL-C, low density lipoprotein cholesterol; LDLR, low-density lipoprotein receptor; PCSK9, proprotein convertase subtilisin kexin 9; ACL, 
adenosine triphosphate-citrate lyase; BA, bempedoic acid; ANGPTL3, angiopoietin-like 3; LPL, lipoprotein lipase; QW, once weekly; Q2W, 
once every 2 weeks; Q4W, once every 4 weeks.
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with a 1.9% increase reported in the placebo group) (Figure 4C) 
(130). Evinacumab was effective both in patients with non-null mu-
tations (having a residual LDLR activity) and patients with null/
null variants (130), and recently it was shown to induce a profound 
plaque regression in two severely affected young FH patients (131). 
This represents a worthwhile observation, as HoFH patients with 
null/null variants have the highest CV risk and the lowest response 
to pharmacological approaches with either conventional or new 
cholesterol-lowering drugs acting through LDLR upregulation in 
the liver. It appears that inactivation of ANGPTL3 decreases the pro-
duction rate of VLDL-apoB (132), suggesting the possibility that the 
reduction in LDL-C levels observed in HoFH patients treated with 
evinacumab could be the consequence of a reduced production of li-
poproteins. A recent small study in 4 HoFH patients examined apoB 
(apolipoprotein B) containing lipoprotein kinetic parameters before 
and after treatment with evinacumab and observed that ANGPTL3 
inhibition was associated with an increase in the fractional catabolic 
rate of IDL-apoB and LDL-apoB (133), suggesting that evinacumab 
lowers LDL-cholesterol predominantly by increasing apoB-contain-
ing lipoprotein clearance from the circulation.

Current gaps in therapy and evolving approaches  
to address gaps, improve adherence – real world 
data on current practice

Randomized clinical trials have unequivocally established the 
cholesterol-lowering effectiveness of newly developed drugs, al-
though for some of them, including inclisiran, bempedoic acid, and 
evinacumab the clinical efficacy is currently under evaluation. De-
spite this, both inclisiran and bempedoic acid have been approved 
based on their LDL-C-lowering effect, that is expected to translate 
into a clinical benefit.

Nevertheless, the everyday clinical practice shows unmet needs 
and gaps that hinder the achievement of lipid goals related to the 
prevention of CV outcomes. Two major issues deserving a more in-
depth discussion relate to 1) the relationship between the cost and 
efficacy of cholesterol-lowering drugs and 2) the adherence to cho-
lesterol-lowering therapies. 

Cost-effectiveness considerations. As already discussed above, current 
guidelines have introduced more and more stringent LDL-C goals 
for all risk categories; this calls for the use of more effective phar-
macological approaches able to reduce LDL-C levels to <55 mg/dl 
in very high risk patients. Most of these patients cannot reach the 
recommended goal with statin monotherapy and in some instanc-
es also after ezetimibe; they would thus be eligible for the use of a 
PCSK9 inhibitor, as specified in the treatment algorithm, allowing 
a substantial percentage of patients to reach their LDL-C goals, but 
raising a question about the costs for the healthcare system. In fact, 
on one hand, PCSK9 inhibitors (but this applies also to inclisiran 
and other biologics) have a higher cost compared with convention-
al oral cholesterol-lowering agents; on the other hand, they have 
definitely a higher cholesterol-lowering efficacy. Starting from these 
considerations, which can be the role for the new oral bempedoic 
acid in this context? Patients can be not too far from their goal, but 
having LDL-C above the recommended level, they are virtually eligi-
ble for PCSK9 therapy; in these patients, the addition of bempedoic 
acid to the ongoing LLT might favour a further (although modest if 
compared with PCSK9 mAbs) LDL-C reduction, allowing to reach 
the goal without a PCSK9 mAb. Furthermore, statin-intolerant pa-
tients, who commonly show a poor adherence and, instead, a high 
discontinuation rate of statin therapy, might benefit from the use of 
bempedoic acid. A recent simulation study performed in a cohort 

in LDL-C levels (43% vs 4% reduction with placebo); CRP was re-
duced by 41% and no worsening of glycaemic control was observed 
(114). The addition of bempedoic acid to a background statin ther-
apy resulted in greater LDL-C reductions compared with placebo 
(115, 116). The triple combination of bempedoic acid, ezetimibe, 
and atorvastatin has been evaluated in patients with hypercholester-
olemia, showing a 63.6% reduction in LDL-C levels compared with 
a 3.1% reduction with placebo at week 6; 95% of patients had their 
LDL-C levels halved following the triple therapy, and 90% achieved 
levels <70 mg/dL (117). Also CRP was significantly lowered by 47.7% 
(vs 2.7% reduction with placebo) (117). Bempedoic acid was effec-
tive in reducing LDL-C also in patients with a history of statin in-
tolerance (118, 119). In all these studies, a good safety profile of 
bempedoic acid was observed, without specific concerns. A modest, 
fully reversible increase in uric acid levels has been reported among 
patients treated with bempedoic acid, likely related to the drug-me-
diated inhibition of a specific transporter (organic anion transporter 
2) (120).

The CLEAR (Cholesterol Lowering via Bempedoic acid, an 
ACL-Inhibiting Regimen) program of bempedoic acid includes 5 
phase 3 studies, 4 of which have been completed (Figure 4B). Two 
of these studies have evaluated the effect of bempedoic acid or pla-
cebo in patients with ASCVD, HeFH, or both and with persistent 
hypercholesterolemia despite maximally tolerated LLT: LDL-C were 
reduced similarly in both studies (placebo corrected differences: 
-18.1% and -17.4%), with an overall improvement of lipid profile and 
significant reductions in CRP levels (placebo-corrected differences: 
-21.5% and -8.7%) (121, 122). The other two studies were performed 
in statin intolerant patients, in which bempedoic acid therapy was 
even more effective in reducing both LDL-C (placebo-corrected dif-
ferences: -28.5% and -21.4%) and CRP (-32.5% and -24.3%) (123, 
124). The ongoing CLEAR Outcomes study will evaluate the effect 
of bempedoic acid or placebo on cardiovascular outcomes in statin 
intolerant patients with, or at high risk for, cardiovascular disease.

Evinacumab. Angiopoietin-like 3 (ANGPTL3) is a physiologi-
cal  inhibitor of two enzymes crucially involved in lipoprotein me-
tabolism, namely lipoprotein lipase (LPL) and endothelial lipase 
(EL) (125). Complete ANGPTL3 deficiency is associated with very 
low plasma lipid levels and no evidence of coronary atherosclero-
sis (126); heterozygous carriers of ANGPTL3 LOF mutations had 
approximately 50% lower ANGPTL3 levels than noncarriers, lower 
levels of TG (-17%, -27%) and LDL-C (-12%, -9%), associated with 
a substantially reduced risk of CAD (-34%, -39%) (126, 127). De-
spite the reasons for the reduction in LDL-C are still not completely 
elucidated, these observations suggested ANGPTL3 as a potential 
target for the pharmacological control of hypercholesterolemia, 
and the evidence of LDLR-independent mechanism(s) advocated a 
potential suitability for patients with HoFH, particularly those car-
rying null LDLR mutations (128). A fully human monoclonal anti-
body targeting ANGPTL3, evinacumab (Figure 4C), was shown to 
reduce dose-dependently LDL-C (up to 23%) and TG (up to 76%) 
levels in healthy volunteers (127). When tested in an a single-group, 
open-label study involving nine HoFH patients, evinacumab added 
to their background lipid-lowering therapy (which included statins, 
ezetimibe, lomitapide, PCSK9 mAbs, or a portacaval shunt) reduced 
LDL-C level by a mean of 49%, but with a wide range of variability 
among patients; three patients with null/null mutations (2 homozy-
gotes and 1 compound heterozygote) had significant, although dif-
ferent, responses to evinacumab (26%, 42%, and 44%, respective-
ly) (129). A subsequent phase 3 trial in 65 HoFH patients (ELIPSE 
HoFH) reported similar results, with patients treated with evinacum-
ab achieving a 47.1% reduction in LDL-C from baseline (compared 
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of patients with coronary heart disease showed that the introducing 
bempedoic acid in the algorithm will reduce substantially the per-
centage of patients requiring a PCSK9 inhibitor to reach their goal, 
thus lowering medical expenditure (134). It appears that patients 
with fully statin intolerance might have the greatest benefit in rela-
tion to cost (134). 

Improving adherence to therapy. In spite of the clearly established 
clinical benefit of cholesterol-lowering therapies, the everyday clin-
ical practice shows inadequacy in the pharmacological approach 
among patients with established ASCVD, with a poor attainment of 
LDL-C target in patients at high CV risk (135, 136). Furthermore, 
there is a low awareness of the danger of CV risk factors, and the 
occurrence of adverse events that are ascribed to the therapy easily 
translates into a time-decreasing adherence to therapy. This is even 
more evident among patients experiencing muscle-related adverse 
events (no matter if they are really imputable to therapy or not), or 
having mild-to-moderate response to the therapy (which is inevitably 
related to the individual response, but more likely to an inadequate 
approach), with an increasing percentage of patients discontinuing 
medications. Thus, improving adherence is crucial and every step 
must be taken to fill this gap. It is evident that the use of fixed-dose 
combination therapies, by combining in one pill two or more drugs, 
may make the patient more willing to take medications, with more 
chances to attain substantial reductions in LDL-C levels, which in 
turn may favour the adherence to an “effective” (from the patient 
point of view) treatment. It is also evident that biological cholester-
ol-lowering drugs (mAbs, siRNA), having administration regimens 
different from the oral agents that must be taken daily, together with 
a higher efficacy, may provide significant reductions in LDL-C with 
infrequent dosing (although at substantially higher costs).

Conclusions
In the last three decades since the approval of statin therapy, an 

extraordinary accumulation of evidence which has shown that reduc-
tion of LDL-C levels results in reduced incidence of CV events and 
that achieving lower levels of LDL-C leads to greater event reduction, 
which led to new guidelines for the treatment of high-risk and very-
high-risk patients. With rapid progress in identification of treatment 
targets through genetic epidemiology and advances in both pharma-
cology and biotechnology, several options are now available in ad-
dition to statins that are highly effective in lowering LDL-C levels. 
However, there is currently a major gap between the evidence-based 
goals of treatment in the guidelines and clinical practice. Changes 
in approach, with earlier use of combination therapy including two 
agents in a single pill (137), as routinely used to treat hypertension 
successfully, and increased use of infrequently used therapies may 
provide great opportunities to improve guideline implementation in 
clinical practice. 
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